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A topology optimization (TO) method is an effective tool for the practical design of electrical machines. TO was conventionally 
achieved by using the material density. However, material-density-based TO may produce problematic solutions; e.g., a large number 
of gray scale areas, and unfeasible shapes. On the other hand, when the TO is based on the advection of level set functions, it is 
superior in terms of both the continuity and practicability of the optimized solution. This paper proposes a level-set-based TO method 
for solving three-dimensional (3-D) magnetic field problems with magnetic nonlinearity. 
 

Index Terms—Finite element method, level set function, regularization, topology optimization. 

I. INTRODUCTION 

HE TOPOLOGY optimization (TO) approach is one of most 
effective tools for the conceptual design of electrical 

machines. Material-density-based TO was proposed by 
Bendsøe, primarily in the field of structural analysis [1]. The 
method was subsequently applied to the electromagnetic field 
optimization problem [2]-[4]. Although material-density-based 
TO has the advantage of offering fast convergence, the shape 
of the converged solution may occasionally be unfeasible. 

This difficulty was overcome by basing the TO on the 
advection of level set functions as proposed by Sethian [5]. In 
this method, the interface between the material body and free 
space is determined by the zero-isosurface of the level set 
function. Because the occurrence of gray scale elements is 
restricted in the neighborhood of the zero-isosurface, the shape 
to which the optimization finally converges is more feasible 
than that derived from material-density-based TO. However, 
there is a drawback to the handling of the advection term in 
Hamilton-Jacobi equation arises in the update of the level set 
function. To enhance the numerical stability of the Hamilton-
Jacobi equation, Park introduced an artificial diffusion term 
[6]. As a result, the Hamilton-Jacobi equation became similar 
to the reaction-diffusion equation arising in the phase field 
method [7]. Although the resultant topology is reasonable and 
practical, the drawback of this approach is that the coefficient 
of the diffusion term additionally requires tuning. 

Then, Yamasaki proposed a regularization technique to 
eliminate the advection term from the Hamilton-Jacobi 
equation [8], and Min successfully applied this technique to 
the two-dimensional (2-D) magnetic field problem [9]. 
However, the effect of the regularization technique on the 
electromagnetic field problem is not clearly shown in [9]. 
Therefore, the validity of the regularization technique of the 
level set function is clearly revealed in this paper, and the TO 
based on this regularized level set function is newly extended 
to the 3-D nonlinear magnetic field problem. 

II. 3-D OPTIMIZATION SCHEME BASED ON REGULARIZATION 

A. Hamilton-Jacobi Equation 

The zero-isosurface of level set function of position vector x 
at time t is formulated as follows: 

0),( tx .                 (1) 

Then, the partial derivative of (1) with respect to t is 
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where n is the normal vector of unit length, and vn is the 
normal component of the velocity vector. 

B. Regularization of Level Set Function 

Because the characteristics of the level set function are 
based on the signed distance, the absolute value of the 
advection term in (2) can be set to 1.0. However, using the 
design sensitivity when the level set function is updated would 
cause the signed distance property to collapse during the 
optimization process. 

Thus, a regularization to retain the signed distance property 
is achieved by extracting the zero-isosurface of the level set 
function from every optimization step. Fig. 1 shows an 
example of an extracted zero-isosurface, which is shaded and 
composed of four local coordinates (1, 1, 1), (2, 1, 1), (max, 
1, 1), and (min, 1, 1). The sequence of points on the zero- 
isosurface is generated by extracting this isosurface element- 
by-element. Next, the value of the level set function of all 

 
Fig. 1.  Three-dimensional regularization of level set function. 
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