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A topology optimization (TO) method is an effective tool for the practical design of electrical machines. TO was conventionally
achieved by using the material density. However, material-density-based TO may produce problematic solutions; e.g., a large number
of gray scale areas, and unfeasible shapes. On the other hand, when the TO is based on the advection of level set functions, it is
superior in terms of both the continuity and practicability of the optimized solution. This paper proposes a level-set-based TO method
for solving three-dimensional (3-D) magnetic field problems with magnetic nonlinearity.

Index Terms—Finite element method, level set function, regularization, topology optimization.

I. INTRODUCTION

THE TOPOLOGY optimization (TO) approach is one of most
effective tools for the conceptual design of electrical
machines. Material-density-based TO was proposed by
Bendsge, primarily in the field of structural analysis [1]. The
method was subsequently applied to the electromagnetic field
optimization problem [2]-[4]. Although material-density-based
TO has the advantage of offering fast convergence, the shape
of the converged solution may occasionally be unfeasible.

This difficulty was overcome by basing the TO on the
advection of level set functions as proposed by Sethian [5]. In
this method, the interface between the material body and free
space is determined by the zero-isosurface of the level set
function. Because the occurrence of gray scale elements is
restricted in the neighborhood of the zero-isosurface, the shape
to which the optimization finally converges is more feasible
than that derived from material-density-based TO. However,
there is a drawback to the handling of the advection term in
Hamilton-Jacobi equation arises in the update of the level set
function. To enhance the numerical stability of the Hamilton-
Jacobi equation, Park introduced an artificial diffusion term
[6]. As a result, the Hamilton-Jacobi equation became similar
to the reaction-diffusion equation arising in the phase field
method [7]. Although the resultant topology is reasonable and
practical, the drawback of this approach is that the coefficient
of the diffusion term additionally requires tuning.

Then, Yamasaki proposed a regularization technique to
eliminate the advection term from the Hamilton-Jacobi
equation [8], and Min successfully applied this technique to
the two-dimensional (2-D) magnetic field problem [9].
However, the effect of the regularization technique on the
electromagnetic field problem is not clearly shown in [9].
Therefore, the validity of the regularization technique of the
level set function is clearly revealed in this paper, and the TO
based on this regularized level set function is newly extended
to the 3-D nonlinear magnetic field problem.

I1.3-D OPTIMIZATION SCHEME BASED ON REGULARIZATION

A. Hamilton-Jacobi Equation

The zero-isosurface of level set function of position vector x
at time ¢ is formulated as follows:

P(x,0)=0. ©)
Then, the partial derivative of (1) with respect to ¢ is
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where n is the normal vector of unit length, and v, is the
normal component of the velocity vector.

B. Regularization of Level Set Function

Because the characteristics of the level set function are
based on the signed distance, the absolute value of the
advection term in (2) can be set to 1.0. However, using the
design sensitivity when the level set function is updated would
cause the signed distance property to collapse during the
optimization process.

Thus, a regularization to retain the signed distance property
is achieved by extracting the zero-isosurface of the level set
function from every optimization step. Fig. 1 shows an
example of an extracted zero-isosurface, which is shaded and
composed of four local coordinates (&, 1, 1), (&, —1, 1), (&nax
—1, —1), and (&uin, 1, —1). The sequence of points on the zero-
isosurface is generated by extracting this isosurface element-
by-element. Next, the value of the level set function of all
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Fig. 1. Three-dimensional regularization of level set function.




nodes in the design domain was redetermined by using the
zero-isosurface in every optimization step.

Applying its regularization, the absolute value of advection
term |V ¢ | in (2) can be transformed to 1.0 completely. Then,
(2) can be easily solved by the finite element method (FEM)
supported by a forward Euler method.

II1.

Fig. 2 shows the 3-D actuator model, in which the
optimization goal is to maximize the magnetic energy stored
in the armature under the condition that the iron core volume
V(@) is less than V. The optimization problem is formulated:

3-D OPTIMIZATION PROBLEM
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where B is the magnetic flux density, v is the reluctivity, €2, is
the target area, Q, is the design domain, and H(¢) is the
Heaviside function, respectively. In the design domain, the
nonlinear property of EU67 is considered to the iron core in
design domain. The finite element mesh with nonconforming
connection is specified as follows: hexahedral 1st order edge
element with 583,779 elements, 606,624 nodes, 606,624 DoF
of FEM, and 352,000 DoF of TO, is adopted.

When the constraint condition is taken into account by
using a Lagrange multiplier, the convergence characteristic of
the objective function is frequently oscillated. If g(¢) is greater
than zero, the constant bias y added to all ¢ in the design
domain is evaluated by solving the nonlinear equation:

g(p+7)=0, 4)
which can be solved by using the Newton method with respect
to 7. This equation is used to perform the volume correction if
g( @) is greater than zero during the optimization process.
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Fig. 2. Three-dimensional actuator model.

IV. RESULTS AND DISCUSSION

Three optimization cases were prepared as shown in
TABLE 1. The maximum number of TO iterations was
uniformly set to 500 for each of these cases, and the resulting
3-D topologies are shown in Fig. 3. In each of the three cases,
the initial topology was set to assume a spherical shape as
shown in Fig. 3 (a). When regularization of the level set
function was not applied to the TO, topology growth did not
proceed beyond a certain point as shown in Fig. 3 (b), because

the smooth distribution of the level set function is suppressed
considerably. On the other hand, application of the
regularization had the effect of drastically improving both the
converged topologies as shown in Fig. 3 (c). Further, when the
magnetic property was linear, the converged value f{¢)' was
also improved as shown in TABLE 1. With magnetic
nonlinearity, the cross-section of the optimized topology
exceeded that of the linear case as shown in Fig. 3 (d). Finally,
the practical application will be described in a four-page paper.
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Distributions of the Heaviside function: (a) initial topology, (b)
optimization result without regularization (magnetic property: linear), (c)
optimization result with regularization (magnetic property: linear), and (d)
optimization result with regularization (magnetic property: nonlinear).

Fig. 3.
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TABLE I OPTIMIZATION RESULTS

(max.it.).

(max.it.).

dim. | magnetic nonlinearity | regularization | max. it. | A¢ )71 [mJ] | Mg )/ Vo | gray scale ratio [%] | elapsed time [h]
— 0.110 0.80 0.34 11.9
3-D B > 500 0.605 0.47 0.63 12.6
v 0.535 1.00 0.89 27.9
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